skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Scheller-Wolf, Alan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Priority queues are well understood in queueing theory. However, they are somewhat restrictive in that the low-priority customers suffer far greater waiting times than the highpriority customers. In this short paper, we introduce a novel generalization of a two-class priority queue, which we call Hybrid. We prove that Hybrid has a much broader achievability region than strict priority, allowing for a much greater range of waiting time pairs. We demonstrate settings where this new flexibility can increase the revenue obtained by a service system (like airport TSA) selling priority. 
    more » « less
  2. Multiserver-job systems, where jobs require concurrent service at many servers, occur widely in practice. Essentially all of the theoretical work on multiserver-job systems focuses on maximizing utilization, with almost nothing known about mean response time. In simpler settings, such as various known-size single-server-job settings, minimizing mean response time is merely a matter of prioritizing small jobs. However, for the multiserver-job system, prioritizing small jobs is not enough, because we must also ensure servers are not unnecessarily left idle. Thus, minimizing mean response time requires prioritizing small jobs while simultaneously maximizing throughput. Our question is how to achieve these joint objectives. We devise the ServerFilling-SRPT scheduling policy, which is the first policy to minimize mean response time in the multiserver-job model in the heavy traffic limit. In addition to proving this heavy-traffic result, we present empirical evidence that ServerFilling-SRPT outperforms all existing scheduling policies for all loads, with improvements by orders of magnitude at higher loads. Because ServerFilling-SRPT requires knowing job sizes, we also define the ServerFilling-Gittins policy, which is optimal when sizes are unknown or partially known. 
    more » « less
  3. null (Ed.)
    New computing and communications paradigms will result in traffic loads in information server systems that fluctuate over much broader ranges of time scales than current systems. In addition, these fluctuation time scales may only be indirectly known or even be unknown. However, we should still be able to accurately design and manage such systems. This paper addresses this issue: we consider an M / M /1 queueing system operating in a random environment (denoted M / M /1( R )) that alternates between HIGH and LOW phases, where the load in the HIGH phase is higher than in the LOW phase. Previous work on the performance characteristics of M / M /1( R ) systems established fundamental properties of the shape of performance curves. In this paper, we extend monotonicity results to include convexity and concavity properties, provide a partial answer to an open problem on stochastic ordering, develop new computational techniques, and include boundary cases and various degenerate M / M /1( R ) systems. The basis of our results are novel representations for the mean number in system and the probability of the system being empty. We then apply these results to analyze practical aspects of system operation and design; in particular, we derive the optimal service rate to minimize mean system cost and provide a bias analysis of the use of customer-level sampling to estimate time-stationary quantities. 
    more » « less
  4. null (Ed.)